Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
J Microbiol Biotechnol ; 32(7): 911-917, 2022 Jul 28.
Статья в английский | MEDLINE | ID: covidwho-1903591

Реферат

As valuable antibiotics, microbial natural products have been in use for decades in various fields. Among them are polyene compounds including nystatin, amphotericin, and nystatin-like Pseudonocardia polyenes (NPPs). Polyene macrolides are known to possess various biological effects, such as antifungal and antiviral activities. NPP A1, which is produced by Pseudonocardia autotrophica, contains a unique disaccharide moiety in the tetraene macrolide backbone. NPP B1, with a heptane structure and improved antifungal activity, was then developed via genetic manipulation of the NPP A1 biosynthetic gene cluster (BGC). Here, we generated a Streptomyces artificial chromosomal DNA library to isolate a large-sized NPP B1 BGC. The NPP B1 BGC was successfully isolated from P. autotrophica chromosome through the construction and screening of a bacterial artificial chromosome (BAC) library, even though the isolated 140-kb BAC clone (named pNPPB1s) lacked approximately 8 kb of the right-end portion of the NPP B1 BGC. The additional introduction of the pNPPB1s as well as co-expression of the 32-kb portion including the missing 8 kb led to a 7.3-fold increase in the production level of NPP B1 in P. autotrophica. The qRT-PCR confirmed that the transcription level of NPP B1 BGC was significantly increased in the P. autotrophica strain containing two copies of the NPP B1 BGCs. Interestingly, the NPP B1 exhibited a previously unidentified SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibition activity in vitro. These results suggest that the Streptomyces BAC cloning of a large-sized, natural product BGC is a valuable approach for titer improvement and biological activity screening of natural products in actinomycetes.


Тема - темы
Biological Products , COVID-19 , Streptomyces , Anti-Bacterial Agents , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chromosomes, Artificial, Bacterial/genetics , Cloning, Molecular , Humans , Macrolides/chemistry , Multigene Family , Nystatin/chemistry , Polyenes/chemistry , Polyenes/pharmacology , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2 , Streptomyces/genetics
2.
J Pharm Biomed Anal ; 218: 114875, 2022 Sep 05.
Статья в английский | MEDLINE | ID: covidwho-1882269

Реферат

Amphotericin B (ATB) is a broad spectrum antibiotic used to combat severe systemic fungal and protozoan infections. Existing and new ATB formulations designed to address the problem of poor solubility and side effects of ATB require pharmacokinetic (PK) studies and dosing controls, especially in critically ill patients. Given that, the present study was devoted to development of competitive immunoassay of ATB and its testing on real human serum samples. A novel immunogen design was based on alternative ATB carboxyl-mediated conjugation to tetanus toxoid (TTd). The resulting conjugates retained antifungal (C.albicans) activity, which indicates the preservation and spatial availability of the ergosterol-binding site, bioactive polyene epitope. Antibody generated against click reaction product, TTd-ATB(cuaac), was able to recognize a group of polyenes ATB, nystatin, natamycin and deoxycholate ATB in heterologous ELISA as 100%, 255%, 99% and 70%, respectively. The sensitivity (IC50), detection limit (IC10) and dynamic range of assay (IC20-IC80) were 6.0, 0.1 and 0.6-46 ng/mL, respectively, and made it possible to quantify total and unbound ATB in the therapeutic range of concentrations in serum. ATB recovery from spiked serum samples was in the range of 95-106% and unbound ATB fractions in ultrafiltrates were about 12%. PK parameters were estimated in single COVID-19 patient with secondary lung Rhizopus microspores infection who was treated with ATB and received veno-venous extracorporeal membrane oxygenation.


Тема - темы
Amphotericin B , COVID-19 , Antifungal Agents/chemistry , Critical Illness/therapy , Drug Monitoring , Humans , Immunoassay , Polyenes/pharmacology
3.
Int J Mol Sci ; 22(9)2021 Apr 25.
Статья в английский | MEDLINE | ID: covidwho-1231493

Реферат

Candida auris is a novel and major fungal pathogen that has triggered several outbreaks in the last decade. The few drugs available to treat fungal diseases, the fact that this yeast has a high rate of multidrug resistance and the occurrence of misleading identifications, and the ability of forming biofilms (naturally more resistant to drugs) has made treatments of C. auris infections highly difficult. This review intends to quickly illustrate the main issues in C. auris identification, available treatments and the associated mechanisms of resistance, and the novel and alternative treatment and drugs (natural and synthetic) that have been recently reported.


Тема - темы
Antifungal Agents/pharmacology , Candida/isolation & purification , Candidiasis/drug therapy , Drug Resistance, Fungal/drug effects , Antifungal Agents/chemistry , Antifungal Agents/therapeutic use , Azoles/pharmacology , Candida/drug effects , Candidiasis/microbiology , Drug Therapy, Combination , Echinocandins/pharmacology , Humans , Mycology/methods , Polyenes/pharmacology , Treatment Failure
Критерии поиска